
LLNL-TR-415791

Scalable I/O Systems via
Node-Local Storage:
Approaching 1 TB/sec File I/O

Grigory Bronevetsky, Adam Moody

August 19, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Scalable I/O Systems via Node-Local Storage:
Approaching 1 TB/sec File I/O

Greg Bronevetsky and Adam Moody
greg@bronevetsky.com and moody20@llnl.gov

Abstract

In the race to PetaFLOP-speed supercomputing systems, the increase in computational
capability has been accompanied by corresponding increases in CPU count, total RAM, and
storage capacity. However, a proportional increase in storage bandwidth has lagged behind.
In order to improve system reliability and to reduce maintenance effort for modern large-scale
systems, system designers have opted to remove node-local storage from the compute nodes.
Today’s multi-TeraFLOP supercomputers are typically attached to parallel file systems that
provide only tens of GBs/s of I/O bandwidth. As a result, such machines have access to
much less than 1GB/s of I/O bandwidth per TeraFLOP of compute power, which is below
the generally accepted limit required for a well-balanced system [8] [17]. In a many ways,
the current I/O bottleneck limits the capabilities of modern supercomputers, specifically in
terms of limiting their working sets and restricting fault tolerance techniques, which become
critical on systems consisting of tens of thousands of components.

This paper resolves the dilemma between high performance and high reliability by present-
ing an alternative system design which makes use of node-local storage to improve aggregate
system I/O bandwidth. In this work, we focus on the checkpointing use-case and present an
experimental evaluation of the Scalable Checkpoint/Restart (SCR) library, a new adaptive
checkpointing library that uses node-local storage to significantly improve the checkpointing
performance of large-scale supercomputers. Experiments show that SCR achieves unprece-
dented write speeds, reaching a measured 700GB/s of aggregate bandwidth on 8,752 proces-
sors and an estimated 1TB/s for a similarly structured machine of 12,500 processors. This
corresponds to a speedup of over 70x compared to the bandwidth provided by the 10GB/s
parallel file system the cluster uses. Further, SCR can adapt to an environment in which
there is wide variation in performance or capacity among the individual node-local storage
elements.

1 Introduction
As modern supercomputing systems approach PetaFLOP performance, they continue to set new
records for processor counts and memory capacity. Together, the top 10 supercomputers in Novem-
ber of 2007 [1] contained 467,561 processors and hundreds of TBs of RAM. Recently deployed
systems such as the BlueGene/P at the Argonne National Laboratory and Ranger at the Texas
Advanced Computing Center push these limits even further. The storage system is an important
component of any supercomputer since it serves as the machine’s primary interface to the external
world, providing it with input data and storing its intermediate and final results. Modern large-
scale applications place great demands on storage systems, with typical problems requiring many
TBs of space.

Large supercomputers have typically relied on two types of storage: node-local storage and
parallel file systems. With the former, storage elements (DRAM, Flash, disk, etc.) are maintained
on each compute node. Applications can use these node-local storage elements as an another
level in the memory hierarchy. The advantage of this approach is scalable performance. The
disadvantage is that storage elements are often more likely to fail or degrade in performance

1

than other system components, which makes the overall system less reliable and more difficult
to service. Parallel file systems are dedicated clusters of machines purposed solely to provide
high-performance storage. The major advantage of these systems is improved reliability and
serviceability (all failures occur in a single rack). The disadvantage is that because the parallel
file system is shared among multiple supercomputers, it is usually connected to each system via
a connection that is much less powerful than the compute network. Hence, parallel file systems
typically offer much less scalable performance than node-local storage.

As the size of supercomputers has risen over the past decade the issues of reliability have come
to overshadow the issues of storage system performance, leading major supercomputer designs
such as the IBM BlueGene and the Cray XT to remove all node-local storage besides RAM and
focus exclusively on parallel file systems. The result has been that while parallel file systems have
successfully scaled in size with the largest supercomputers, reaching multiple PBs in capacity, the
bandwidth they provide has not kept pace. In particular, although 1GB/s of I/O bandwidth per
1 TeraFLOP of computing power is typically considered key to a well-balanced system, modern
systems like the BlueGene/L at the Lawrence Livermore National Laboratory and the upcoming
BlueGene/P at the Argonne National Laboratory achieve less than a tenth of that rate [15] [8].

This poor I/O bandwidth negatively impacts the performance of modern applications. One use-
case especially affected from slow I/O bandwidth is checkpointing. As modern systems grow larger
and more complex, they also grow less reliable, with many applications encountering mean times
between failures on the order of hours or days due to hardware breakdowns [18] and soft errors [11].
For example, the BlueGene/L at the Lawrence Livermore National Laboratory produces an L1
cache bit error every 3-4 hours and a hard failure every 7-10 days. Applications typically survive
such failures by regularly checkpointing their state to stable storage and reloading this state upon
a failure. Unfortunately, since checkpointing involves sending large fractions of system RAM
state to the parallel file system, this is becoming increasingly expensive as systems grow ever-
larger. In particular, dumping all of RAM on a 128K-processor BlueGene/L supercomputer to its
parallel file system takes approximately 20 minutes [15], and a design goal of the recently deployed
BlueGene/P at the Argonne National Laboratory was for a 30 minute full-system checkpoint [8].
Thus, as supercomputers continue to grow in size, checkpointing will become both more critical
and less practical, forcing PetaFLOP-scale applications to either spend most of their time writing
checkpoints or to use redundancy-based approaches that have overheads of more than 100%.

Another use-case for high I/O bandwidth is data-intensive supercomputing [4], which is an
application domain focused on analyzing large data sets. This includes a variety of applications
in biology, dynamic data-driven application systems [6], and large-graph analyses like those per-
formed by Google and the intelligence community. These applications are special in that they
analyze data from very large data sets, such as the GeneExpression database, which is expected
to grow to multiple PBs in size [7] and data from the planned experiments on the Large Hadron
Collider at CERN (ATLAS, CMS, ALICE and LHCB), which are expected to produce 25PBs
per year. Altogether, the total amount of global electronic information is expected to continue
to increase at a rate of 60% per year, which pushes future problem sizes even further. The fact
that computational and storage capability of large supercomputers has thus far kept up with these
growing problem sizes makes these machines very attractive for this application domain. However,
the lack of I/O bandwidth between the processors and storage currently makes these machines
inadequate for the task [4].

There are two reasons for the relative slowness of today’s I/O system designs. The first is
that the storage systems used in modern large scale systems are designed to be separate from the
main compute nodes. This ensures that the data is available to multiple machines and remains
available if any given machine goes down. However, because this design puts the storage system
on a separate network from the compute nodes, it also limits the available I/O bandwidth, with
today’s systems typically providing a few tens of GB/s. Further, since the storage system is a
shared resource by design, the contention for this resource further reduces its effective bandwidth.
The second reason is that modern parallel file systems are designed to provide a generic POSIX

2

API that most users are accustomed to in their daily work. As such, they must provide various
services, such as meta-data management, that are not needed in many simpler contexts such as
checkpointing, and cause sub-optimal performance.

This paper presents a new scalable I/O system design that overcomes the limitations of modern
high-performance I/O systems. The main insight of this design is that in large supercomputers
node-local storage has scaled much better than traditional parallel file systems. As such, we
propose to use such storage elements as an extra level of cache between compute node memory and
the parallel file system, providing any necessary consistency and reliability guarantees in software.
We support this design direction by presenting SCR, a new checkpointing library that provides a
highly scalable storage abstraction for checkpoint/restart applications. SCR caches checkpoint files
in the node-local storage to achieve significant improvements in aggregate checkpoint bandwidth.
To deal with reliability issues inherent to node-local storage, SCR can adapt to storage element
failure and degradation and provided several redundancy schemes that trade off performance with
reliability and required storage space.

We evaluate the proposed I/O system design by experimentally evaluating SCR on Atlas and
Thunder, two large-scale clusters at the Lawrence Livermore National Laboratory. Each machine
consists of more than 1,000 compute nodes with tens of TBs of RAM and delivers tens of Ter-
aFLOPs of compute power. Both machines contain DRAM node-local storage via RamDisc, and
Thunder also contains disk node-local storage. These two machines provide a unique large-scale
testbed on which to evaluate the scalability and performance of this approach. Our experimental
results show that I/O bandwidth scales to 700GB/s peak bandwidth and will reach as high as
1TB/s for an Atlas-style machine consisting of 12,500 processors.

2 Current State of the Art
The typical design for today’s smaller clusters and the older generation of large supercomputers is
shown in Figure 1. These machines are based on large numbers of multi-socket motherboards, each
with a local disk. Since each node has access to a dedicated storage element and the number of such
elements grows linearly with the size of the system, applications that run on such machines are
guaranteed high I/O bandwidth that scales with the number of nodes in the system. Unfortunately,
this design also has major drawbacks in the context of very large supercomputers. Since hard drives
are tightly integrated into their host nodes in the traditional design, the failure of a hard drive
results in the failure of an entire compute node and the application itself. Since hard drives are
much less reliable than other system components [16], the mean time before failure (MTBF) of
any large system constructed with integrated hard drives is unacceptably low. Another problem
with the traditional design is the common practice of storing the OS image on each node’s hard
drive and booting each node from this image. This approach complicates system maintenance,
making common system update operations slow and invasive to system users. Finally, as most
local disks were made available via relatively low-level APIs, such as the /tmp directory, they were
generally left unused by application developers, significantly lowering their utility.

As a result of the above issues, modern large-scale machines like BlueGene/L, Bluegene/P,
Ranger, and the Cray XT series all follow the design in Figure 2. Compute nodes have no local
storage besides RAM, and all I/O funnels directly to the parallel file system through relatively
thin connections. For example, most machines at the Lawrence Livermore National Laboratory
connect to the parallel file systems via a small number of 10Gigabit/s Ethernet connections. In
contrast, the compute networks on these same clusters offer aggregate bandwidths on the order
of TBs/s. The strong points of this modern design are its high reliability and manageability and
the fact that application data is simultaneously available to multiple machines via the shared
parallel file system. However, the corresponding cost is that these systems provide relatively poor
bandwidth to the storage system when compared to the their compute power and compute network
bandwidth. With typical large supercomputers taking tens of minutes to transfer their RAM to
the parallel file system, it is clear that even as modern large-scale systems are reaching new heights
of performance, their designs are leaving behind critical aspects system performance, leading to

3

CPUs Disk

CPUs Disk

CPUs Disk

CPUs Disk
CPUs Disk

Parallel File System

I/O
Nodes

\texttt{

Figure 1: Traditional Cluster Design

Parallel File System

CPUs

CPUs

CPUs

CPUs

CPUs

I/O
Nodes

Figure 2: Modern Large Supercomputer De-
sign

significant shortcomings in their capabilities. This point is also noted by other researchers [4] [17].
One way of looking at the difference between traditional designs and the current state of the

art is to think of local disks as an extra level of cache between compute node RAM and the parallel
file system. In spite of the various good reasons to remove this cache, modern designs are now
suffering from the resulting sparse memory hierarchy that contains a large gap between two levels:
local RAM and the parallel file system. As such, the simplest way to overcome the limitations of
current designs is to replace this level of the memory hierarchy without hitting the limitations of
traditional designs. The main idea of our proposal is that compute nodes should be augmented
with additional storage elements while ensuring that the following principles are followed:

• storage elements may fail but the computation must continue,
• the OS should be booted from a centralized repository and not from the local caches, and
• the caches must not be explicitly exposed to users and should instead be used by library

implementors (ex: checkpointing libraries, virtual memory) to transparently improve appli-
cation performance

Although modern large-scale system designs follow these basic principles, they consistently use
expensive RAM to implement all node-local storage. By showing the utility of the node-local
storage concept, we hope to popularize its use, thus motivating future system designs to supply
more such memory perhaps using more cost-effective storage technologies such as Flash, MEMS,
or disk.

In the rest of the paper we argue for the benefits of the above design by presenting SCR, a
library for efficiently storing checkpoint data in node-local storage. Our evaluations of SCR on two
large-scale supercomputers, the 9216-processor Atlas and the 4096-processor Thunder machines at
the Lawrence Livermore National Laboratory (currently the 29th and 47th largest supercomputers
in the world), show the benefits of using node-local storage to improve checkpoint bandwidth and
support our contention that such storage is critical to scalable supercomputer design. Section 3
discusses the basic problem of checkpointing and prior related work on scalable checkpoint storage.
Section 4 describes the key algorithms implemented in SCR and how they impact performance and
reliability. These algorithms are experimentally evaluated Section 5, proving the efficacy of our
approach. Section ?? then describes how SCR addresses the needs of today’s large-scale platforms
and the applications that run on them.

3 Checkpointing
Prior work on checkpoint storage has focused in two directions: distributed techniques that rely
on node-local storage and more centralized techniques that focus on high-performance parallel file
systems. The former category is best exemplified by work on diskless checkpointing by Plank,
Li and Puening [14]. The primary idea of diskless checkpointing is to store most checkpoints in
each node’s RAM, using replication or error correcting codes to guard against data loss in case of

4

failure. Such low cost checkpoints could be taken frequently, with rarer and slower checkpoints to
the shared file system. This idea was subsequently extended to local disks [13] and experimentally
evaluated on small clusters [19] [9] and large SIMD machines [5].

More centralized file systems have also seen a significant amount of work. In particular, the
open-source Lustre parallel file system [2] has been very effective. However, while it is routinely
used in production, high-performance computing environments, the current limitations on the I/O
bandwidth in such environments shows that Lustre alone cannot solve the problem. The Zoid I/O
forwarding infrastructure [8] is designed to improve the I/O bandwidth of BlueGene/L and Blue-
Gene/P supercomputers by optimizing various portions of the I/O software stack. However, while
Zoid approaches the physical limitations of the BlueGene I/O subsystem, it cannot not overcome
the fundamental I/O bandwidth bottleneck imposed by its design. Finally, Zest [20] presents a
novel hardware/software approach for providing an high-quality, cost-efficient I/O system (high
MB/sec/$). However, this system is designed to work outside the compute network and thus far
has only been shown to reach bandwidth of 800MB/sec. In contrast, our experiments show SCR
reaching 700GB/sec of I/O bandwidth.

4 Algorithms
The Scalable Checkpoint / Restart (SCR) library is a library we designed to use node-local storage
to implement a scalable I/O system to store checkpoint files. Any type of node-local storage can
be used for this purpose. In Section 5, we evaluate DRAM and hard disk drives in particular,
since those are the devices available on our large-scale clusters. The SCR library currently im-
plements the following redundancy algorithms which tradeoff performance, storage requirements,
and reliability:

• Local - checkpoint files are written to local storage
• Partner - checkpoint files are written to local storage, and redundantly copied to local

storage on a partner node
• XOR - checkpoint files are written to local storage, and an XOR parity file of checkpoint files

from different nodes is computed and stored redundantly in the local storage of multiple
nodes

• Adaptive Partner - checkpoint files are written to local storage, and copies are spread over
multiple partner nodes, chosen adaptively to maximize performance and reliability

• Adaptive XOR - Adaptive Partner, where the XOR encoding of data on the adaptive part-
ners is stored on one or more additional adaptively-chosen partners

Local: In Local, the library simply writes checkpoint files to storage on the local node. As
such, it requires sufficient local storage to write the maximum checkpoint file size. This scheme
is very fast, and it can withstand all failures that kill the application process but leave the node
accessible. This failure class includes application bugs, such as segmentation faults or memory
leaks, as well as, communication or file I/O errors that abort the application but leave the rest
of the system intact. However, this scheme is susceptible to any failure that renders the node
inaccessible, such as when the node loses power or its network connection.

Partner: In Partner, the library writes checkpoint files to storage on the local node, and it
also copies files to storage on a partner node. This scheme is slower and requires twice the storage
space as Local, but it can withstand whole-node failures. Nodes are arranged in a ring according
to their physical ordering in the network, and each node selects the node D hops to the right to
be its partner. On the systems we tested, D=1 provided the best performance, because this often
amounted to picking partner nodes that are physically close to one another in the network, which
reduces network contention. However, nodes located near each other may be more likely to fail
simultaneously, such as when a common network switch fails or a power breaker feeding a section
of the cluster shuts off. Thus, larger hop distances D may be choosen to improve reliability at the
cost of reducing performance.

5

XOR: In XOR, nodes are first assigned to disjoint sets, each of size N . The nodes in the
same set collectively compute a bitwise XOR of their checkpoint files using Reduce-scatter, which
effectively splits the resulting XOR parity file into N equal-sized segments and stores one segment
per node. Then, each node writes its XOR segment to local storage and copies it to a partner
node within the XOR set. In this scheme, checkpoint files are not duplicated, but the XOR file is,
meaning that it can withstand multiple node failures so long as two nodes from the same XOR set
do not fail at the same time. This algorithm takes more time than Partner, but it requires less
storage space. Whereas Partner must store two full checkpoint files, XOR stores one full checkpoint
file plus two XOR file segments, where the segment size is roughly 1/Nth the size of a checkpoint
file. Larger XOR sets demand less storage but also increase the probability of data loss.

Adaptive Partner: The Adaptive Partner algorithm allocates one or more partner nodes
to each node, allowing it to spread its checkpoint data over the storage elements of those nodes. To
address the variation in performance and space among a given set of individual node-local storage
elements, Adaptive Partner samples the available space and bandwidth of the storage elements
and uses the Hill Climbing-based search algorithm to find an allocation of partners that optimizes
performance and reliability. As a result, nodes with more space and/or faster storage elements will
be used more frequently as storage targets and the number of partners assigned to each node will
be minimized to reduce the probability that the node failures will result in data loss. The data
distribution algorithm itself is more complex than Partner because the partner node allocations
are more heterogeneous and is thus less able to take advantage of pipelining effects.

Adaptive XOR: The Adaptive XOR algorithm is a variable of Adaptive Partner where each
node breaks its checkpoint file into chunks of size ≤ 1/C times the checkpoint size, where C is
the minimum number of partners that must be used by each node. These individual chunks are
XOR-ed together and the resulting XOR parity file is stored on an additional set of partner nodes
that is disjoint from the partners that store checkpoint data. Because no chunk stored by a node
is larger than 1/C times the checkpoint size, the overall XOR file is at most that large. Larger
values of C result is smaller XOR files but reduce reliability since they require application data to
be spread over more nodes. Smaller values have larger XOR files but better reliability since the
increases in the XOR file do not require nodes to use more partners to store it.

5 Experiments
We conducted experiments on two production clusters at the Lawrence Livermore National Labo-
ratory: Atlas and Thunder. Atlas consists of 1152 nodes, where each node contains four dual-core
AMD Opteron processors and 16GB of main memory. Nodes are connected via Infiniband 4x
links running at DDR, which provides a peak MPI bandwidth of 1.5GB/s. Atlas nodes have no
local hard drives. Thunder consists of 1033 nodes, where each node contains four single-core Intel
Itanium2 processors and 8GB of main memory. Nodes are connected via the Quadrics Elan4
interconnect, which provides approximately 900MB/s peak MPI bandwidth. Thunder nodes have
a local hard drive. Both machines use a fat-tree network topology, where individual nodes are
connected to lower-level switches, which are then connected to multiple higher-level switches. The
Infiniband network for Atlas employs static routing, while the Quadrics network on Thunder pro-
vides dynamic routing. On Atlas, checkpoint files were written to the RamDisk (a file system
maintained in DRAM), and on Thunder, they were written to the local hard drive. In some places
the graphs are missing specific data points due to our limited access to the target machines. In all
such cases we focused on getting the largest-scale data points possible; the final paper will include
all data points.

5.1 Major Results
We begin by presenting the major results of this study. Figure 3 shows the aggregate bandwidth
achieved by all the algorithms: Local, Partner, and XOR on Atlas/RamDisk and Thunder/disk.
Processor counts, which scale from 16 to 32k, are shown on the x-axis and the bandwidth, in

6

10

100

1000

10000

100000

1000000

10000000

16 32 64 128 256 512 1024 2048 4096 8752 16384 32768

M
B

/s

Number of Processors

Atlas - Local

Atlas - Partner

Atlas - XOR

Thunder - Local

Thunder - Partner

Thunder - XOR

Lustre-Experiment

1 TB/s

10 GB/s

Figure 3: Aggregate Bandwidth

MB/s, is plotted on the y-axis. To provide context, the graph also includes two lines that corre-
spond to the Lustre parallel file system which is attached to both clusters as a shared resource.
Lustre-Experiment corresponds to experimental bandwidths achieved by having increasing num-
bers of Thunder nodes save their entire memories to Lustre (best of 10 trials). Furthermore, the
10GB/s bandwidth line corresponds to the current peak bandwidth that this parallel file system
can provide.

Each experimental line is augmented with a trend-line that predicts the performance of each
configuration for processor counts where data is not currently available. We applied exponential
fit functions for all configurations except for Lustre-Experiment, where a 2nd order polynomial
produced a better fit to the data. We use these trends to make predictions about larger systems
built from the same architecture.

The major conclusion to be made from Figure 3 is that the use of node-local storage for
checkpointing is far more scalable than using the parallel file system. Even if we assume that
Lustre delivers its peak bandwidth for all processor counts, its 10GB/s is quickly overtaken by all
of the Atlas configurations. In particular, this data allows us to predict that node-local storage
can be used to achieve 1TB/s of aggregate I/O bandwidth on an Atlas-type system with 2,380
processors using the Local algorithm and 12,500 processors using the more reliable Partner
algorithm.

Thunder’s disk-based performance is lower than Lustre for smaller processor counts. Never-
theless, the superior scalability of node-local storage means that Thunder-Local will beat Lustre’s
peak bandwidth at approximately 1,890 processors and Thunder-Partner will beat Lustre at
approximately 4,270 processors. Furthermore, Thunder-Local exceeds Lustre’s real-world band-
width at much smaller processor counts. The important point to be made is that node-local
storage provides natural scalability. Regardless of the choice of storage technology, the aggregate
I/O bandwidth will naturally scale will with overall system size.

Figure 3 shows clear differences between the performance characteristics of the three check-
point storage algorithms, with Local outperforming Partner, which outperforms XOR. This is not
surprising, since each algorithm adds additional communication and computation on top of the
previous one. These results can be used to intelligently trade off performance, reliability, and
storage space requirements for saving checkpoint files. In particular, the fact that hard disk drives
are much cheaper per GB than DRAM means that the XOR algorithm, which requires less space
at the cost of increased time, is less useful for disks than it is for DRAM.

We explore the performance characteristics of the parallel file system in Figure 4, which shows
the full range of checkpoint times across the 10 runs in each Lustre experiment run on Thunder.

7

0
100
200
300
400
500
600
700
800
900

1000

8 16 32 64 128 256 512 1024

Lu
st

re
 C

he
ck

po
in

t T
im

e
(s

)

Number of Processors

Min

Avg

Max

Figure 4: Time to take full checkpoints to
Lustre (range of 10 trials)

0

100

200

300

400

500

600

700

8 16 32 64 128 256 512 1024

Lu
st

re
 C

he
ck

po
in

t T
im

e
(s

)

Number of Processors

Min

Avg

Max

Figure 5: Time to take full checkpoints to
Lustre (minimum of 10 trials, range across
processors)

0

5

10

15

20

25

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8

M
B

/s
 (T

hu
nd

er
)

M
B

/s
 (A

tl
as

)

Writer Processes per Node

Atlas -
10MB

Atlas -
50MB

Atlas -
100MB

Thunder
- 10MB

Figure 6: Per-node bandwidth with
Local (256 nodes on Atlas, 256
nodes on Thunder)

0

1

2

3

4

5

6

7

8

9

0

100

200

300

400

500

600

16 32 64 128 256 512 1024 2048

M
B

/s
 (T

hu
nd

er
)

M
B

/s
 (A

tl
as

)

Number of Processors

Atlas -
10MB

Atlas -
50MB

Atlas -
100MB

Thunder -
10MB

Figure 7: Per-processor bandwidth with Local

- Scaling

It shows that although the minimum checkpoint times are low (the minimum times are used
in Figure 3), there is a large difference between the minimum and the maximum times, with
the average being much higher than the minimum. For small processor counts, the average and
maximum times are, respectively, 626% and 1280% higher than the minimum time. This difference
drops to 15% and 37%, respectively, for large processor counts. Furthermore, Figure 5 presents
the minimum, average and maximum checkpoint times across all processors within the minimum-
time checkpoints for each processor count. The same pattern is seen as before, except that in
this case, the differences rise with increasing processor count. The average and maximum are
respectively 12% and 33% higher than the minimum for small processor counts. This degrades to
a respective 211% and 332% for larger processor counts. This data shows the inherent variability
of accessing a shared resource such as the parallel file system, which is in use simultaneously
by multiple compute nodes from multiple applications. This variability creates a significant cost
for large-scale, tightly synchronized applications which are quite sensitive to even smaller timing
effects such as Operating System noise [10]. While node-local storage is not immune to timing
variation effects due to slow nodes, these effects are already well-known and can be overcome by
(i) a judicious choice of nodes on which to run the application or (ii) alternative storage algorithms
that balance the load across fast and slow nodes.

8

5.2 Local
Figure 6 shows the per-node bandwidth of the Local algorithm on 256 nodes on Atlas and 256
nodes on Thunder. The x-axis corresponds to the number of processes writing data on each node.
The left y-axis shows the bandwidth for Atlas, while the right y-axis shows the bandwidth for
Thunder. Both y-axes are in units of MB/s. Each bar corresponds to experiments with different
checkpoint sizes per writer process. On Atlas, the per-node bandwidth increases with increasing
number of writer processes per node. There are two explanations for this. First, on Atlas nodes,
memory and processor sockets are configured in a NUMA architecture, such that each socket is
connected directly to a local bank of memory. This enables different processors to access memory
banks in a contention-free manner. In addition, the implementation may be benefiting from
pipelining of file I/O requests in the operating system. Regardless, while each processor accesses
DRAM at very high bandwidths, it is clear that the processors collectively have not yet saturated
the available DRAM bandwidth on the node.

The per-node bandwidth trend moves the opposite direction on Thunder. On this system
all processes on a node share a single hard drive. In the current implementation, the processes
compete with each other for access to the drive, and this contention decreases the aggregate
bandwidth. A better implementation could reduce this effect by scheduling access to the drive in
order to maintain full bandwidth.

Figure 7 shows how the Local algorithm per-processor bandwidth scales with increasing pro-
cessor counts. In each case we used the optimal number of writer processes per node: 8 for Atlas
and 1 for Thunder. The performance scales very well with increasing processor counts on both
clusters. This scaling is nearly perfect on Atlas, while the Thunder results show some fall-off.
In our experiments, we found that there is some spread in hard drive write speeds on different
nodes. Due to synchronization in the implementation, one slow node acts to slow down the entire
operation. As more nodes are used, the likelihood of running with such slow nodes increases, and
thus the performance falls off with more processors. While we have attempted to filter out some of
these nodes, this is nevertheless a real and well-known phenomenon in large-scale systems. Even
so, the Thunder results scale very well and remain in a range of 5 to 8MB/s per processor for all
processor counts tested.

5.3 Partner
For Partner, we begin by analyzing how the hop distance, D, and the number of writing processes
per node influence overall node bandwidth. Figures 8 and 9 show the per-node Partner bandwidth
for Atlas and Thunder, respectively. The bandwidth is shown in MB/s along the y-axis, and the
partner hop distance, D, which varies from 1 to 32 is shown along the x-axis. For each value of the
hop distance, we show the measured bandwidth for a set of different numbers of writing processes
per node. We varied the number of processes per node from 1 to 8 in the Atlas runs and from 1
to 4 in the Thunder runs.

First, in Figure 9, note how the per-node bandwidth generally increases as the number of
processes per node is increased on Atlas. This is due to a pipelining effect. While transferring
a file, a process reads a chunk of file from storage, and then sends it to its partner. It receives
an incoming chunk from another process simultaneously with its send, as the network links are
bidirectional. Once the incoming chunk is received, it is written to storage. The next outgoing
chunk is then read from storage, and the cycle is repeated until the entire file has been transferred.
The file chunk size is large enough to achieve the peak MPI link speed. However, it takes time for
a process to read and write these chunks in storage, during which time, the process does not utilize
the link. By adding more processes per node, processes can pipeline their network operations and
keep the link better utilized. The net result is that the per-node bandwidth increases as more
processes run on the node.

Second, also in Figure 9, note how this pipelining effect saturates as the hop distance increases
from D = 1 to D = 32. Since higher values of D encounter more network contention (discussed
below), there is less link bandwidth available to be pipelined.

9

0

100

200

300

400

500

600

700

1 2 4 8 16 32

M
B

/s

Partner Distance D

1

2

4

8

Writer
Processes

Per
Node

Figure 8: Per-node bandwidth on Atlas with
Partner (1094 nodes)

0

2

4

6

8

10

12

1 2 4 8 16 32

M
B

/s

Partner Distance D

1

2

4

Writer
Processes

Per
Node

Figure 9: Per-node bandwidth on Thunder
with Partner (256 nodes)

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32

M
B

/s

Partner Distance D

512

1024

2048

4096

8752

Number
of

Processors

Figure 10: Per-processor bandwidth on At-
las with Partner (8 processes per node)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32

M
B

/s

Partner Distance D

16

32

64

128

256

512

1024

Number
of

Processors

Figure 11: Per-processor bandwidth on
Thunder with Partner (1 process per node)

In contrast, in Figure 9, Thunder’s per-node bandwidth remains basically constant with in-
creasing processes per node. In this case, the hard drive, which is much slower than the network
link speed, is a bottleneck. A single process is capable of saturating the disk bandwidth. When
running with more processes per node, the disk bandwidth is split equally among them.

Figures 10 and 11 show the per-processor Partner bandwidth for Atlas and Thunder, respec-
tively. We scale the number of processors from 512 to 8752 on Atlas and from 16 to 1024 on
Thunder. We show results when using the number of processes per node which maximizes the
per-node aggregate bandwidth on both systems: 8 for Atlas and 1 for Thunder. The per-processor
bandwidth is shown in MB/s along the y-axis, and the partner hop distance, D, which varies from
1 to 32 is shown along the x-axis.

In Figure 10, the first trend to note is how the bandwidth on Atlas generally falls off with
increasing hop distance. This effect is clear as the per-processor bandwidth steadily drops from
80MB/s when D = 1 to less than 50MB/s when D = 32 for a given number of processors. This
effect is caused by increased network contention. When D is small, many partner nodes are located
on the same leaf-level switches as their sending nodes. In this case, packets bounce off of the first-
level switch and are forwarded immediately to their destination without contention. However,
once D grows larger, partner nodes are located on different leaf-level switches. Packets must
contend with each other in higher-level links and switches. Due to the static routing in Infiniband
networks, this contention can be severe, and this leads to the fall off in Partner bandwidth.

Note that this trend is not seen in the Thunder results, in Figure 11, because its Quadrics
network is dynamically routed, which avoids hot-spots.

The second trend to note, in Figure 10, is the scalability of the Partner bandwidth as the
number of processors is increased for a fixed value of D. For low values of D, like D = 1 or

10

0

10

20

30

40

50

60

70

80

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128

M
B

/s

XOR Set Size N

512

1024

2048

4096

8752

Number
of

Processors

10 MB 50 MB 100 MB

Figure 12: Per-processor bandwidth on Atlas with XOR (8 processes per node)

D = 2, the bandwidth scales almost perfectly. For D = 1, the bandwidth drops by only 1.6%
from 83.5MB/s to 82.2MB/s as the number of processors increases from 512 to 8752. For D = 2,
the results are almost as scalable, until there is a more significant drop in performance for the
largest processor count of 8752. For larger values of D, scalability falls off for smaller processor
counts. This is due, again, to network contention, since using more processors leads to more
packets flowing through the same network. Ultimately, although the scaling is not perfect for
larger values of D, the Partner bandwidth still scales reasonably well even for values as large as
D = 32, where performance remains in a range between 30 to 50MB/s.

The results for Thunder, in Figure 11, also scale quite well. Although, there is some fall off in
performance for very large process counts. This effect is due to the increased likelihood of running
with slow nodes as discussed in Section 5.2.

5.4 XOR

0

0.5

1

1.5

2

2.5

4 8 16 32 64 128

M
B

/s

XOR Set Size N

16

32

64

128

256

512

1024

Number
of

Processors

Figure 13: Per-processor band-
width on Thunder with XOR (1 pro-
cess per node)

Figures 12 and 13 show the per-process XOR bandwidth for
Atlas and Thunder, respectively. We used the optimal num-
ber of processes per node on both systems: 8 for Atlas and 1
for Thunder. The per-processor bandwidth is shown in MB/s
along the y-axis, and the XOR set size, N , is shown along
the x-axis. In Figure 12 for Atlas, we also test with three dif-
ferent file sizes of 10, 50 and 100MB, which are shown along
the x-axis. For each value of the XOR set size, we show the
measured bandwidth for a set of processor counts ranging
from 512 to 8752 on Atlas and from 16 to 1024 on Thunder.

Like the Partner algorithm, the XOR algorithm scales
very well as the number of processors increase. This can be
seen in Figure 12 for an XOR set size of N = 4 and file size
of 10MB. The per-process bandwidth only falls by 1.9% from
62.6MB/s to 61.4MB/s as the number of processors increases
from 512 to 4096. This scalability trend holds generally for
the different XOR set sizes and different file sizes.

One may note, in Figure 12, that performance is scalable but relatively lower for XOR set
size N = 128 and a file size of 10MB. For this file size, the XOR segments are only 80KB, which
is less than the file chunk size of 128KB. This reduces the benefit of pipelining. Note that this
performance drop off is not as significant for 50MB or 100MB files, where segment sizes are larger.

On Thunder, the clear trend, in Figure 13, is the reduced performance with increasing XOR
set size. A larger XOR set size, leads to a higher number of segments, each of which is smaller for
a given checkpoint file size. This leads to more individual disk operations of a smaller size, which

11

0

2

4

6

8

10

12

14

1 2 4 1 2 4 1 2 4

Adaptive Partner Adaptive XOR Partner

16

32

64

128

256

0

100

200

300

400

500

600

1 2 4 8 1 2 4 8 1 2 4 8

Adaptive Partner Adaptive XOR Partner

32

64

128

256

512

Number of
Processors

Number of
ProcessorsAtlas Thunder

Figure 14: Performance of Adaptive Partner and Adaptive XOR

reduces performance.
In a head-to-head comparison on 2048 processors on Atlas with 1 process per node, the best

XOR per-process bandwidth achieves 109MB/s which is 57% of the best Partner bandwidth of
190MB/s. With 8 processes per node, the best XOR per-process bandwidth is 64MB/s, which is
78% of the best Partner bandwidth of 82MB/s. Thus, the XOR scheme gains a bigger advantage
from pipelining effects, which help to overlap the additional XOR computations.

On Thunder, this trend does not hold; XOR performance is mostly independent of the number
of processes per node. In general, the recommendation is to use Partner when writing to a hard
drive like on Thunder. The primary benefit of using XOR is to conserve storage space, which is of
much less concern when writing to a hard drive as opposed to DRAM.

5.5 Adaptive Partner and XOR
5.5.1 Performance
We now explore the performance properties of the adaptive algorithms. Adaptive Partner and
Adaptive XOR use a hill climbing search to allocate for each node one or more partners on which
it will store its checkpoint. These partners are chosen to minimize the expected the running time
and probability of data loss and it is the ability of Adaptive Partner to work around issues
like failed or slow nodes that makes it possible to efficiently use node-local storage as individual
storage elements degrade or fail. We first look at the performance properties shown by real runs
on Atlas and Thunder and then show simulated results that describe the expected performance of
the algorithm as systems age.

Figure 14 shows the node bandwidth achieved by the Adaptive Partner and Adaptive XOR
algorithms on Atlas and Thunder as the number of processors ranges from 16 to 512 and the number
of writer processors per node is varied from 1 to the total number of processors (horizontal axis).
In Adaptive XOR we used C = 8 (application data was divided 8-ways among different donors).
These bandwidths are compared to the bandwidth achieved by the Partner algorithm. (a few
data points were not completed in time for submission but will be included in the final paper)

The first thing to note is that the adaptive algorithms have similar performance to the more
deterministic Partner algorithm. This is encouraging because it shows that at least on fat-tree
networks the unstructured communication pattern used by Adaptive Partner and Adaptive
XOR do not put them at a disadvantage relative to Partner’s more regular and pipelined pattern.
The second point is that just like with Partner the adaptive algorithms perform better as the
number of writer processors increases on Atlas and perform worse on Thunder. This again shows
that on Atlas these algorithms are able to fully take advantage of the node’s communication links
whereas on Thunder the algorithms overwhelm the capabilities of the disk as the number of writers
increases. Finally, we get the best node bandwidth for the smaller runs because in those cases
the probability of a slow node being included in the job’s allocation is small. For large runs the
probability of one of the nodes being slow rises, causing worse overall performance.

When comparing the performance of Adaptive Partner and Adaptive XOR we see that the
performance of Adaptive XOR is not much lower than Adaptive Partner, despite the additional

12

work to compute XOR parities. This is in contrast to XOR, which is much slower than Partner.
The reason for this is that Adaptive XOR requires no additional communication to compute its
XOR files. Specifically, the primary additional costa of Adaptive XOR over Adaptive Partner
are Adaptive XOR (i) sends application data to more partner nodes and (ii) sends additional XOR
data to partner nodes. The first point has little effect on Adaptive XOR’s performance since both
machines use fat-tree network, while the latter has a small impact because only the XOR is only
1/8th the size of the application data.

An important property of the adaptive algorithms is that they can adapt to properties of the
system’s network topology. In particular, Atlas’ deterministic routing fat-tree network provides
better performance for communication between nodes connected to the same low-level switch than
for nodes on different low-level switches. Figure 15 shows the relative performance benefit of using
the hill-climbing algorithm to take network locality information into account when searching for
allocations. We focused on the Hype system at the Lawrence Livermore National Lab, which is
identical to Atlas, except that it has 16 processors per node instead of 8. The search algorithm
optimized for locality by reducing bandwidth by a factor of 3 for communication between non-local
nodes, when estimating the cost of the checkpoint. The Figure shows that for 512 processor runs
there is little difference between locality sensitivity and insensitivity, with the latter option even
being slightly faster. However, for the 1024 processor runs the locality sensitive allocation results
in 8%-15% higher checkpoint bandwidth, an effect that is consistent regardless of the number of
writer processors per node.

5.5.2 System Aging

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 4 8 16

Writer Processes per Node

%
 B

W
 im

pr
ov

em
en

t o
ve

r l
oc

al
ity

-in
se

ns
iti

ve

512 Processors
1024 processors

Figure 15: Relative performance benefit of
locality-sensitive allocation

we evaluated the effectiveness of the adaptive algo-
rithms on systems as they age by estimating the per-
formance of both Adaptive Partner and Adaptive
XOR on a system as its storage elements fail or degrade.
Specifically, we took a system modeled after Thun-
der: 1024 nodes, each with a 40GB disk that provides
33MB/s write bandwidth. We then estimated the ef-
fect of aging on such a system month-by-month over
a 4-year time period by having its disk fail 3% each
year, which is typical disk failure rate [12]. Further-
more, to model disk performance degradation, each
month we randomly chose 10% of the disks and re-
duced their bandwidth by 5%. During the course of
the simulation the platform lost 135 disks (13%) and
its total disk bandwidth was reduced by 32%. We then used hill-climbing to choose 10 partner
allocations for the system’s configuration in each month, optimized for both checkpoint time and
probability of losing application data. Checkpointing time was estimated by assuming an ideal
network and evaluating each node’s time to send data to its partners given their disk bandwidths.
Probability of losing application data was computed by adding up the probabilities of all events
that can result in application data loss in during a 1-day run on systems 7 and 8 in Schroeder
and Gibson’s study of system failure logs [18]: .3% for each node. For Adaptive Partner this
was the probability that a node and one of its partners both fail during the run and for Adaptive
XOR it was the probability of a node, one of its application data partners and one of its XOR data
partners failing during the run.

Figure 16 shows how both algorithms perform as the system degrades. Figure 16(a) shows that
Adaptive Partner has a significantly higher probability of losing data than does Adaptive XOR.
However, both probabilities change little as the system ages because even as some disk fail, there
are still enough disks available that the number of partners used by each node does not increase.
On the other hand, Figure 16(b) shows that as the system ages checkpointing times increase
steadily. This is because the aggregate bandwidth of all the disks in the system is steadily reduced

13

Checkpointing Time (sec)

0

500

1000

1500

2000

2500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Simulation Month

Adaptive Partner

Adaptive XOR

(a) (b)

Data Loss Probability

0.00%

0.10%

0.20%

0.30%
0.40%

0.50%

0.60%

0.70%

0.80%

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Simulation Month

Adaptive Partner

Adaptive XOR

Figure 16: Adaptive Partner and Adaptive XOR performance/reliability on simulated system

as disks fail or degrade and the hill-climbing algorithm adapts well to these conditions. Adaptive
XOR grows slightly better than Adaptive Partner as the system degrades because it is forced to
store data in smaller units, making it more likely that the hill-climbing algorithm with find a
better allocation. Adaptive Partner would show similar performance if it used the same search
heuristic.

6 Conclusions
The goal of this paper is to present node-local storage as a scalable I/O system design for large scale
supercomputers. Modern supercomputer designs, such as those used to construct BlueGene/L,
BlueGene/P, Ranger, and the Cray XT series remove most node-local storage from compute
nodes, forcing all storage I/O to funnel to an external parallel file system. While this approach
simplifies system design and administration, and while it has some positive effect on reliability,
it also creates an important bottleneck between the compute nodes and their storage. As a
result, modern supercomputers are limited in the types of operations they can efficiently perform.
Checkpointing, which is becoming increasingly critical as supercomputers grow larger and less
reliable, now takes up tens of minutes for large-scale applications. Furthermore, data-intensive
supercomputing, a new and promising application domain, is currently beyond the capabilities of
these machines because they cannot efficiently access and operate on large amounts of data.

This paper presents an experimental evaluation of using node-local storage to support check-
pointing, one of the key use-cases. We describe SCR, a new checkpointing library that uses
node-local storage to significantly improve the performance and scalability of checkpointing, and
we use this library to experimentally validate our proposed design. Our experiments show that all
of SCR’s checkpointing algorithms scale extremely well to large numbers of processors, showing
that we can reach 1TB/s for one of the algorithms using 2,380 processors and reach the same mark
with a more reliable algorithm using 12,500 processors. This is in contrast to existing centralized
storage technologies that currently reach a few tens of GB/s. Furthermore, this scaling behav-
ior is consistent across different architectures, networks, and storage technologies, showing that
node-local storage is a general and scalable approach to supercomputing storage in a wide variety
of real-world environments. Further, we presented an evaluation of the scaling properties of the
Lustre parallel file system and found that, although Lustre scales well upto its peak bandwidth,
this peak does not itself scale with the size of the supercomputer because the parallel file system
is not integrated with the compute nodes or the compute network. In addition, because Lustre is
used as a shared resource, performance is erratic across runs and across different processes within
the same run. This inconsistency results in reduced application performance and makes it harder
for users to plan their batch runs. Finally, we presented two novel storage algorithms that adapt
to the properties of the underlying node-local storage elements. These algorithms were shown to
have similar performance properties to the non-adaptive algorithms and were shown to adapt well

14

as the underlying system degrades over a multi-year period of time.
Our ongoing work is focusing on extending our evaluation of scalable node-local storage to

new application domains. In particular, we plan to extend the set of supported APIs from check-
pointing to file I/O and virtual memory. These extensions will enable us to study the scalability
and performance of node-local storage for these domains and enable us to make more specific
recommendations for future supercomputer designs.

As supercomputing systems approach the PetaFLOP performance range, their immense com-
putational power must be balanced by scalable systems to connect these machines to the outside
world. This paper provides large-scale experimental evidence that node-local storage is an effective
scalable storage technology for future supercomputer designs.

References
[1] http://www.top500.org.

[2] http://www.lustre.org.

[3] NR Adiga, G Almasi, GS Almasi, Y Aridor, R Barik, D Beece, R Bellofatto, G Bhanot, R Bickford, M Blum-
rich, AA Bright, and J. An Overview of the BlueGene/L Supercomputer. In IEEE/ACM Supercomputing
Conference, 2002.

[4] R. E. Bryant. Data-intensive supercomputing: The case for DISC. Technical Report CMU-CS-07-12, Carnegie
Mellon University.

[5] Tzi-Cker Chiueh and Peitao Deng. Evaluation of checkpoint mechanisms for massively parallel machines. In
International Symposium on Fault-Tolerant Computing, 1998.

[6] Frederica Darema. Dynamic data driven applications systems: A new paradigm for application simulations
and measurements. In International Conference on Computational Science, pages 662–669.

[7] Tony Hey and Anne Trefethen. The data deluge: An e-science perspective. In Grid Computing: Making the
Global Infrastructure a Reality, pages 809–824.

[8] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman. ZOID: I/O-forwarding infrastructure
for petascale architectures. In Symposium on Principles and Practice of Parallel Programming (PPoPP, 2008.

[9] Hai Jin and Kai Hwang. Distributed checkpointing on clusters with dynamic striping and staggering. In Asian
Computing Science Conference on Advances in Computing Science, 2002.

[10] Darren J. Kerbyson, Adolfy Hoisie, and Harvey J. Wasserman. Use of predictive performance modeling during
large-scale system installation. Parallel Processing Letters, 15(4):387–396, 2005.

[11] Sarah E. Michalak, Kevin W. Harris, Nicolas W. Hengartner, Bruce E. Takala, and Stephen A. Wender.
Predicting the number of fatal soft errors in los alamos national laboratorys ASC Q supercomputer. IEEE
Transactions on Device and Materials Reliability, 5(3):329–335, September 2005.

[12] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure trends in a large disk drive popu-
lation. In Conference on File and Storage Technologies (FAST), 2007.

[13] James S. Plank. Improving the performance of coordinated checkpointers on networks of workstations using
RAID techniques. In Symposium on Reliable Distributed Systems (SRDS), 1996.

[14] James S. Plank, Kai Li, and Michael A. Puening. Diskless checkpointing. IEEE Transactions on Parallel and
Distributed Systems, 9(10):972–986, October 1998.

[15] Rob Ross, Jose Moreirra, Kim Cupps, and Wayne Preiffer. Parallel I/O on the IBM Blue Gene/L System.
Technical report, BlueGene Consortium, 2005.

[16] Bianca Schroeder and Garth Gibson. Disk failures in the real world: What does an MTTF of 1,000,000 hours
mean to you? In Conference on File and Storage Technologies, 2007.

[17] Bianca Schroeder and Garth Gibson. Understanding failure in petascale computers. In USENIX Conference
on File and Storage Technologies, 2007.

[18] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-performance computing systems.
In In Proceedings of the International Conference on Dependable Systems and Networks (DSN), June 2006.

[19] Lus M. Silva and Joo Gabriel Silva. An experimental study about diskless checkpointing. In EuroMicro, 1998.

[20] Nathan Stone, Doug Balog, Paul Nowoczynski, Jason Sommerfield, and Jared Yanovich. Zest: The maximum
reliable TBytes/sec/$ for petascale systems. In Supercomputing Storage Challenge, 2007.

15

